11 research outputs found

    On Statistical Mechanics Developments of Clan Concept in Multiparticle Production

    Get PDF
    Clan concept has been introduced in multiparticle dynamics in order to interpret the wide occurrence of negative binomial (NB) regularity in n-charged particle multiplicity distributions (MDs) in various high energy collisions. The centrality of clan concept led to the attempt to justify its occurrence within a statistical model of clan formation and evolution. In this framework all thermodynamical potentials have been explicitly calculated in terms of NB parameters. Interestingly it was found that NB parameter k corresponds to the one particle canonical partition function. The goal of this paper is to explore a possible temperature and volume dependence of parameter k in various classes of events in high energy hadron-hadron collisions. It is shown that the existence of a phase transition at parton level from the ideal clan gas associated to the semihard component with k>1 to the ideal clan gas of the hard component with k<1 implies a discontinuity in the average number of particles at hadron level.Comment: 20 pages, latex, no figures; v2: the description of the framework has been considerably expanded, and the main body has been reorganized for clarit

    Monte Carlo investigation of the magnetic anisotropy in Fe/Dy multilayers

    Full text link
    By Monte Carlo simulations in the canonical ensemble, we have studied the magnetic anisotropy in Fe/Dy amorphous multilayers. This work has been motivated by experimental results which show a clear correlation between the magnetic perpendicular anisotropy and the substrate temperature during elaboration of the samples. Our aim is to relate macroscopic magnetic properties of the multilayers to their structure, more precisely their concentration profile. Our model is based on concentration dependent exchange interactions and spin values, on random magnetic anisotropy and on the existence of locally ordered clusters that leads to a perpendicular magnetisation. Our results evidence that a compensation point occurs in the case of an abrupt concentration profile. Moreover, an increase of the noncollinearity of the atomic moments has been evidenced when the Dy anisotropy constant value grows. We have also shown the existence of inhomogeneous magnetisation profiles along the samples which are related to the concentration profiles

    Magnetisation switching in a ferromagnetic Heisenberg nanoparticle with uniaxial anisotropy: A Monte Carlo investigation

    Full text link
    We investigate the thermal activated magnetisation reversal in a single ferromagnetic nanoparticle with uniaxial anisotropy using Monte Carlo simulations. The aim of this work is to reproduce the reversal magnetisation by uniform rotation at very low temperature in the high energy barrier hypothesis, that is to realize the N\'eel-Brown model. For this purpose we have considered a simple cubic nanoparticle where each site is occupied by a classical Heisenberg spin. The Hamiltonian is the sum of an exchange interaction term, a single-ion anisotropy term and a Zeeman interaction term. Our numerical data of the thermal variation of the switching field are compared to an approximated expression and previous experimental results on Co nanoparticles
    corecore